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Abstract 

In this study two measures for defining color differences in 
spectral space are defined using two spectral databases, 
Munsell Glossy and NCS. First of the measures is a N-
dimensional Euclidean distance between two radiance 
spectra. Spectral differences of constant chroma, adjacent 
hues and adjacent values in Munsell and NCS-databases are 
evaluated and analyzed based on this measure. 

Three-dimensional conical color-space with first three 
PCA-eigenvectors of NCS- and Munsell data as basis 
vectors is defined and analyzed. The second error measure 
is defined as the Euclidean distance in this space.  

Similarities between eigenvectors and opponent signals 
proposed by Hurvich and Jameson are noticed. Smoothed 
eigenvectors of NCS are concluded to be better for creation 
of a uniform color-space than the Munsell eigenvectors. The 
projections of a radiance spectrum to the modified 
eigenvectors define the coordinate values of the color-
space. It is noticed that by weighting the first and the 
second eigenvector by luminous efficiency curve the color-
space will be more uniform. Finally the variables are 
modified so that the color-space would be as uniform as 
possible but still allowing the calculations be quite simple. 
Also simple chromatic adaptation terms are defined for this 
color-space to improve its performance. Hue angle 
differences between adjacent hues of Munsell value 6 are 
determined using standard color-spaces and modified 3-
dimensional spectral eigenvector space. Also the chroma 
scales as a function of hue are evaluated. Chroma and hue 
differences in spectral space and in modified eigenvector 
space are compared to the most common color difference 
formulas (CIELAB  E, CIE94 and CIEDE2000). 
Performance of defined color-space with Munsell Glossy 
spectra is compared to the CIELAB-space and the 
CIECAM97s-model. 

Introduction 

A majority of color difference formulas are based on the 
CIELAB-color-space. The original color difference formula 
in the CIELAB-space was defined as an euclidean distance 
in a 3D-space. Afterwards different kind of terms and 
parameters have been added to improve the performance of 
the color difference formula.1, 2, 3 

Recently, many kinds of color appearance models have 
been constructed. These include ATD-models4 and 

CIECAM97s-model, which is recommendation of CIE.5 
Although one claims, that CIECAM97s is uniform, it still 
hasn’t been used much for color difference definitions. One 
reason may be its complexity. Furthermore, CIECAM97s-
model has been revised many times since the original 
version was published, and a completely new version, 
CIECAM02s, has been published recently.6-8 Also a new 
color difference formula based on CIELAB, CIEDE2000, 
was developed. CIEDE2000-color difference formula is 
also recommended by CIE.  

The color difference formulas based on CIELAB 
cannot be explained physiologically. They are formulas, 
which improve mathematically the uniformity of the 
CIELAB-space. However, we can’t define any logical 
coordinate system with those formulas. An ideal uniform 
colorspace should base on the physiology of human visual 
system. The lack of information about the human visual 
system makes it impossible to create an unarguable color 
appearance model on physiological basis.  

The second chance to create uniform color-space is to 
use statistical methods. We can create three-dimensional 
dataset by calculating the first three principal components 
for radiance spectra of the dataset.9 Recently this kind of 
PCA-based spectral analysis has been done much in the 
field of spectral imaging.9,10 By editing these eigenvectors 
we are able to define almost the same dimensions as the 
human color vision system has. Here one needs to point out 
that usually our databases are based on some physiological 
theory or model, for example in case of Munsell system that 
is the opponent theory model. It is well known that the first 
eigenvector of spectral dataset is proportional to the mean 
of the spectra and further to the intensities of the spectra.10 
The second and the third eigenvectors are quite similar to 
the opponent signals proposed by Hurvich and Jameson.10-12 

 Another way to create uniform colorspace statistically 
is to use optimizing methods which map spectra to the 
uniform color space defined by uniform dataset.13 

Experimental 

The coordinate systems were defined using two spectral 
datasets, Munsell Glossy data (1600 samples) and NCS-
data. In case of Munsell Glossy dataset, reflectance spectra 
of colorpatches were measured by a spectrophotometer 
from wavelength 380 to 780 nm with 1 nm intervals. 
Radiance spectra were calculated using C-illumination, to 
which Munsell data is calibrated. In case of NCS data, 
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reflectance spectra were measured between wavelengths 
400-700 nm with 10 nm intervals. NCS-data was used with 
D65-illuminant.12 

First, the eigenvectors of both datasets (from radiance 
spectra) were defined. The first three eigenvectors for both 
Munsell Glossy and NCS-data, and the opponent signals 
proposed by Hurvich and Jameson are shown in figure 1. 
The first three eigenvectors of NCS-data were interpolated 
to have intervals of 1 nm. The smoothed NCS eigenvectors 
proved to work slightly better as a basis of a novel color-
space. At this point our color-space is simply a three-
dimensional subspace of the original 301-dimensional 
spectral space. 
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    (c) 

Figure 1. (a) First three Munsell Glossy eigenvectors (b) First 
three NCS eigenvectors (c) Opponent signals proposed by Hurvich 
and Jameson.10 

 
 
It is known that the first eigenvector of spectral dataset 

is proportional to meanvector of the spectral data and 
further to intensity.9 By multiplying the first eigenvector by 
the cone sensitivity (V( )-curve), we can get a value 
proportional to luminance by projecting a reflected spectra 
to this modified first eigenvector. Because cone sensitivity 
isn’t linear, some nonlinear modification to the projection 
must be done. We used the same modification as CIELAB 
system does, i.e. cubic root of projection. 12 

It has been concluded that human visual system is 
conical.10 In certain luminance plane the second and the 
third eigenvector coefficients (projections of spectra to the 
second and third eigenvector) define a cartesian plane, and 
with those cartesian coordinates we are able to define hue 

and chroma as usual.7 In case of the color-space based on 
the first three Munsell eigenvectors it was noticed, that the 
gray-axis was a little bit slant to blue region, so the whitest 
sample had some chroma. However, as we note, the 
Munsell data is defined under C-illumination, and we also 
know, that C-illumination is little bit bluish. We conclude 
that this phenomenon is because of chromatic adaptation 
and this problem can be corrected by a simple adaptation 
term.12 

It also follows from experiments made with Munsell 
data, that values of chroma predicted by the projections of 
spectra to the second and the third eigenvectors of constant 
chroma spectra appears to increase when brightness (or 
lightness) is increasing. The problem is solved by dividing 
the second and the third projections by squareroot of 
brightness value described above, and “chromarings” of 
various values match better to each other. When considering 
the chromarings of value 6 at this point, we could see that 
chromarings were slightly flattened on green area. So we 
conclude that we must weight also the second eigenvector 
by product of Judd’s V( )-curve and the first eigenvector 
before calculating projections. However, the third 
eigenvector must not be weightened by Judd’s V( )-curve, 
because that would bend the grayaxel to a very slant one. 
Figure 2 represents eigenvectors, of which the first and the 
second have been weighted by Judd’s sensitivity curve. 
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Figure 2. NCS-eigenvectors (the first and the second eigenvector 
weighted by Judd’s sensitivity curve, and the third one scaled to 

have approximately the same magnitude as the second 
eigenvector). 

 
 
Comparing Figs. 1 (c) and 2 we can see, that the 

opponent signals proposed by Hurvich and Jameson are 
very much like signals presented in Fig. 2, but still some 
differences exist. 

Finally we weightened the projections so that the 
brightness and the chroma values matches as well as 
possible to the original Munsell values and chromas. The 
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final formulas to modified eigenvectorspace coefficients are 
as follows (using eigenvectors of NCS): 
Brightness (B): 

[ ] 3/1
1 )()()( λλλ REVB ⋅=    (1) 

 
Blue-orange-value (b): 

 

[ ]
bDB

REEVb −⋅= 2
21 )())()()((16 λλλλ

   (2) 

 
Purple-green-value (g): 

 gDB
REg −⋅= 2

3 )()(95.0 λλ
,   (3) 

where E1( ), E2( ) and E3( ) are the first three eigenvectors 
of NCS-data (reflectance) weighted by radiance spectrum of 
illuminant D65, R( ) is radiance spectrum of the sample, 
and Db and Dg are chromatic adaptation factors defined as 
follows: 

3
21 )())()()((16
AW
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where dA is the degree of chromatic adaptation (0-1) and WA 
is the radiance spectrum of adapted illumination which is C 
for the Munsell data and D65 for NCS-data. This chromatic 
adaptation model simply straightens the gray-axis if we 
choose dA to be equal to one. 

Finally, the brightness value B was normalized to W 
(Whiteness) to correspond better Munsell value: 

 6.2−= BW      (6) 

Spectral data of Munsell and NCS was also converted 
to CIELAB and CIECAM97s-spaces. With CIECAM97s 
we used Qab-space, where Q corresponds brightness and a 
and b defines a plane of chromaticity in the same manner as 
CIELAB does. It should be noticed that hue angles on bg-
plane do not correspond to hue angle on a*b*-plane of 
CIELAB or hue angles on ab-plane of CIECAM97s.  

We also defined distance matrices in 301 (400-700 nm 
with intervals of 1 nm) dimensional space in the case of 
Munsell Glossy data and in 31-dimensional (400-700 nm 
with 10 nm intervals) space in the case of NCS-data. From 
this data we calculated chromadifferences with different 
chromas as a function of hue in a certain value plane (Fig 5 
(d)). 

Results 

Munsell Glossy spectra in C illumination with full 
chromatic adaptation to C-illumination was plotted to the 
resultant 3D-colorspace, and the projections of that 
colorspace with Munsell spectra are shown in Fig 3 (a)-(c). 
  

 

     

 

 

(a) 

 
 
 
 
 
 
 
 
 
 

(b) 

 
 
 
 
 

 

 

 

(c) 

Figure 3. Munsell Glossy spectra plotted in 3D-colorspace based 
on the NCS-eigenvectors. (a) bg-plane. (b) Wb-plane. (c) Wg-
plane. 

 
 
 
The constant hue and constant chroma lines of Munsell 

Glossy value 6 in Wbg-space, CIELAB-space and 
CIECAM97s-space are shown in Fig 4 (a) –(c). This figure 
shows that CIECAM97s works slightly better than our 
novel wbg-colorspace in terms of smoothness of constant 
chromalines.  

-20 -15 -10 -5 0 5 10
1

2

3

4

5

6

7

8

9

10

w
 (

w
hi

te
ne

ss
)

b (blueness)

-20 -15 -10 -5 0 5 10 15
1

2

3

4

5

6

7

8

9

10

w
 (

w
hi

te
ne

ss
)

g (greenness)

-20 -15 -10 -5 0 5 10
-20

-15

-10

-5

0

5

10

15

b (blueness)

g 
(g

re
en

ne
ss

)

IS&T's 2003 PICS Conference

207



 

 

-15 -10 -5 0 5 10
-15

-10

-5

0

5

10

15

b

g

-60 -40 -20 0 20 40 60
-40

-20

0

20

40

60

80

a

b

-80 -60 -40 -20 0 20 40 60 80
-60

-40

-20

0

20

40

60

80

a

b

 

(a)    (b)    (c) 

Figure 4. Constant Hue and constant chroma lines (a) on bg-plane 
of Wbg-space, (b) on a*b*-plane of CIELAB-space and (c) on ab-
plane of CIECAM97s-space.  
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 (e)      (f) 

Figure 5. Constant chroma lines (chromas 2, 4, 6 and 8) of 
Munsell Glossy value 6 data as function of Hue and mean chromas 
as function of Munsell chroma (a) in Wbg-space, (b) in CIELAB-
space, (c) in CIECAM97s-space, (d) in 301-dimensional euclidean 
spectral space, (e) defined by CIE94 color difference formula and 
(f) defined by CIEDE2000 color difference formula. 

 
 
Figures 6-8 shows that the performance of the wbg-

space is quite competent if we compare it to CIELAB- or 
CIECAM97s-model. While predicting Munsell chroma or 
value (Figs 6-7) we can see that Wgb-space works 
unarguably best. Prediction of Munsell Hue is quite similar 
in all three models. 

The results with the NCS-data were very similar with  
Munsell data. 
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Figure 6.  Mean (a) Wbg-chroma, (b) CIELAB-chroma, and (c) 
CIECAM97s-chroma vs. Munsell Chroma with their standard 
deviations. Chroma-scales have been normalized so that Munsell 
Chromas 2  have the right prediction of chroma.  

2 4 6 8
2

4

6

8

10

Munsell value

W
b

g-
va

lu
e  

2 4 6 8 2

4

6

8

10

Munsell value

C
IE

L
A

B
-v

al
ue

2 4 6 8
2

4

6

8

10

Munsell value

C
IE

C
A

M
97

s-
va

lu
e
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Figure 7.  Mean (a) Wbg-value, (b) CIELAB-value, and (c) 
CIECAM97s-value vs. Munsell Value with their standard 
deviations. Value-scales have been normalized so that Munsell 
Values 9 have the right prediction of value.  
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Figure 8.  Mean (a) Wbg-hue, (b) CIELAB-hue, and (c) 
CIECAM97s-hue vs. Munsell Hue with their standard deviations. 
Hue-scales have been normalized so that Munsell Hues 0 (2.5 R) 
have the right prediction of hue. 

Conclusions 

The newest modifications of three dimensional color 
coordinates have a tendency to become rather complex. Our 
goal in this study was to find out a simple way to define a 
uniform three dimensional color coordinate system based 
directly on color spectra. 

A very interesting question related to the novel 
colorspace based on eigenvectors of radiance spectras is that 
why the second and third eigenvector are so similar to those 
functions proposed by opponent color theory. We can find 
out the fact that the simplest solution to represent smooth 
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natural spectra by three components is to use one constant 
function (intensity), sine-function and cosine-function. 
When considering for instance the opponent signals 
proposed by Hurvich and Jameson, it’s easy to see that they 
are quite similar to sine- and cosine functions. However, 
evolution hasn’t been able to match them perfectly to each 
other.  

Another thing, which is increasing the similarity 
between opponent functions and the second and the third 
eigenvector, can be purely statistical; Munsell colorsystem 
is based on opponent colortheory.  

When comparing opponent signals proposed by 
Hurvich and Jameson to three first eigenvectors, from 
which the first and the second are weighted by cone’s 
spectral sensitivity, we can note that third eigenvector is 
quite different compared to yellow-blue-channel opponent 
signal. The biggest problem is in this case that the third 
eigenvector isn’t zero in its ends. This property means that 
chroma is too large when brightness is small with purple 
spectra. Model also allows negative brigthness values. Also 
the chromatic adaptation model, which is included to the 
novel color-space is too simple and it is expected that it 
doesn’t work properly enough. Also adaptation to different 
background luminance levels is ignored. That is also the 
reason why Wbg-model uses term brightness instead of 
lightness. Hence it’s obvious that this novel spectral color-
space should be developed further before it can be used as a 
uniform color-space. 

However this novel colorspace works quite well at least 
with smooth spectra, e.g. with Munsell or NCS-data if we 
compare it to CIELAB or original CIECAM97s model. A 
topic for a new research is to clear out, if the model works 
also with spectra containing sharp peaks, such as with LCD 
and CRT spectra. It’s obvious that with these spectra we can 
not use eigenvectors, which cover only wavelengths from 
400 nm to 700 nm, because CRT’s red phosphor has 
significant luminance also on wavelengths over 700 nm, for 
example. 

In this research we also test the performance of a 301-
dimensional euclidean spectral space. However, because the 
testing was done only with chromadifferences, we couldn’t 
get a good general view of its performance. We realize that 
the ability of the 301-dimensional spectral space to predict 
chromadifferences is not yet satisfactory. 
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